Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Erwann Jeanneau, ${ }^{\text {a* }}$ Shashank Mishra ${ }^{\text {b }}$ and Liliane G. HubertPfalzgraf ${ }^{\text {b }}$
${ }^{\text {a }}$ Centre de Diffractométrie Henri Longchambon, Université Claude Bernard Lyon1, 43 boulevard du 11 Novembre 1918, 69622 Villeurbanne Cédex, France, and ${ }^{\mathbf{b}}$ Institut de Recherche sur la Catalyse, Université Claude Bernard Lyon1, 2 avenue Albert Einstein, 69626 Villeurbanne Cédex, France

Correspondence e-mail:
erwann.jeanneau@univ-lyon1.fr

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.011 \AA$
R factor $=0.040$
$w R$ factor $=0.091$
Data-to-parameter ratio $=12.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Di- μ-aqua-bis($\{N$-[(2-dimethylamino- κN)ethyl]$N, N^{\prime}, N^{\prime}$-trimethylethane-1,2-diamine- $\left.\kappa^{2} N, N^{\prime}\right\}$ sodium(I)) diiodide

The title compound comprises centrosymmetric dimeric units, $\left[\mathrm{Na}_{2}(\mathrm{PMDTA})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$ (PMDTA is $N, N, N^{\prime}, N^{\prime \prime}, N^{\prime \prime}$-pentamethyldiethylenetriamine, $\mathrm{C}_{9} \mathrm{H}_{23} \mathrm{~N}_{3}$), where two Na cations are bridged by two water molecules. Each Na^{+}cation is also coordinated by three N atoms of a PMDTA molecule to give a five-coordinate distorted square-pyramidal geometry. Polymeric chains are then obtained through weak interactions between the water molecules and the I^{-}anions that provide the charge balance. The cations and anions lie on a mirror plane.

Comment

Each of the Na^{+}ions in the title compound, (I) (Fig. 1 and Table 1), is coordinated by two O atoms from water molecules and three N atoms from a single PMDTA molecule (PMDTA is $N, N, N^{\prime}, N^{\prime \prime}, N^{\prime \prime}$-pentamethyldiethylenetriamine). The charge balance is provided by iodide anions and the entire assembly is disposed about a position with site symmetry $2 / m$.

(I)

This $\mathrm{N}_{3} \mathrm{O}_{2}$ donor set defines a five-coordinate polyhedron that is a distorted square pyramid, which is the usual fivecoordinate geometry encountered together with the trigonal bipyramid (Reglinski et al., 1999; Shen \& Jing, 2002). However, the coordination number found for the Na^{+}cation is quite rare. Indeed, sodium usually forms six-coordinate complexes (Albada et al., 1999; Goher \& Mautner, 1994), and significantly fewer five- and seven-coordinated geometries have been reported (Aukauloo et al., 1999; Barnhart et al., 1995; Bishop et al., 2000; Gibney et al., 1996). This structure can be related to the previously reported anhydrous complex [$\mathrm{Na}_{2} \mathrm{I}_{2}$ (PMDTA) $)_{2}$, which is a μ, μ^{\prime}-diiodo-bridged dimer with the tridentate PMDTA molecules providing the five-coordinate environment around the Na cations (Raston et al., 1989). Unlike this compound, where the Na cations are connected through iodide anions [$\mathrm{Na}-\mathrm{I}=3.081$ (2) \AA] , compound (I) achieves dimerization through water O atoms [mean $\mathrm{Na}-\mathrm{O}=$

Received 23 June 2005
Accepted 4 July 2005
Online 13 July 2005

Figure 1
The structure of the cation (30% probability displacement ellipsoids). [Symmetry codes: (i) $1-x,-y,-z$; (ii) $x,-y, z$; (iii) $1-x, y,-z$.]

Figure 2
View of one of the polymeric chains running along the c axis. The broken lines indicate hydrogen bonds.
2.37 (2) \AA A. It is noteworthy that the overall topology of both dimers is identical. In contrast, the three-dimensional arrangement is different. In the anhydrous compound, the dimeric units are discrete, whereas in the hydrated compound, the dimeric units form chains running along the c axis of the unit cell through a network of weak interactions between the I^{-}anions and the water molecules $[\mathrm{O} 2-\mathrm{H} 7=0.82(5) \AA$, $\mathrm{I} 10 \cdots \mathrm{H} 7=2.69(5) \AA$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{I}=176(4)^{\circ}$; see Fig. 2]. The $a c$ planes containing these chains stack along the b axis in a step-like manner with an $a / 2$ shift (see Fig. 3). The mean $\mathrm{Na}-\mathrm{O}[2.37$ (2) \AA] and $\mathrm{Na}-\mathrm{N}$ distances [2.482 (4) \AA] are in good agreement with those reported in similar compounds (Raston et al., 1989; Cole et al., 2002). Within the PMDTA ligand, all distances agree well with expected $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}$ bond lengths (Ellermann et al., 1998).

Experimental

The title compound was obtained as a by-product from the reaction of $\mathrm{BaI}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ with $\mathrm{NaOCH}\left(\mathrm{CF}_{3}\right)_{2}$ (1:1 stoichiometry) in a solution of tetrahydrofuran and dimethoxyethane (1:1 in volume) in the presence of PMDTA. Small colorless crystals of (I) grew overnight from the concentrated mother liquor at 253 K , together with the related anhydrous compound and two barium derivatives (which remain to be characterized).

Figure 3
Projection of the unit-cell contents along the c axis. The broken lines indicate hydrogen bonds.

Crystal data

$\left[\mathrm{Na}_{2}\left(\mathrm{C}_{9} \mathrm{H}_{23} \mathrm{~N}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{I}_{2}$
$M_{r}=682.42$
Monoclinic, $C 2 / m$
$a=13.7534$ (6) \AA
$b=17.1348$ (8) \AA
$c=7.6723$ (3) \AA
$\beta=120.997$ (2) ${ }^{\circ}$
$V=1549.87(12) \AA^{3}$
$Z=2$
$D_{x}=1.462 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 1809
reflections
$\theta=1-28^{\circ}$
$\mu=2.08 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
Block, colorless
$0.05 \times 0.05 \times 0.05 \mathrm{~mm}$

Data collection

Nonius KappaCCD diffractometer
ω scans
Absorption correction: multi-scan
DENZO/SCALEPACK
(Otwinowski \& Minor, 1997)
$T_{\text {min }}=0.901, T_{\text {max }}=0.901$
3361 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.091$
$S=0.87$
1629 reflections
126 parameters

1899 independent reflections
1629 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.027$
$\theta_{\text {max }}=27.9^{\circ}$
$h=-17 \rightarrow 18$
$k=-22 \rightarrow 20$
$l=-10 \rightarrow 10$

Only H-atom coordinates refined
Weighting scheme: see below
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=2.24 \mathrm{e} \mathrm{A}^{-3}$
$\Delta \rho_{\min }=-0.72 \mathrm{e}^{\AA^{-3}}$

Table 1
Selected geometric parameters $\left({ }_{\mathrm{A}},{ }^{\circ}\right)$.

$\mathrm{Na} 1-\mathrm{O} 2^{\mathrm{i}}$	$2.356(5)$	$\mathrm{N} 3-\mathrm{C} 8$	$1.453(7)$
$\mathrm{Na} 1-\mathrm{N} 3^{\mathrm{ii}}$	$2.480(4)$	$\mathrm{N} 3-\mathrm{C} 9$	$1.452(8)$
$\mathrm{Na} 1-\mathrm{O} 2$	$2.385(5)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.461(10)$
$\mathrm{Na} 1-\mathrm{N} 3$	$2.480(4)$	$\mathrm{C} 5-\mathrm{N} 6$	$1.468(7)$
$\mathrm{Na} 1-\mathrm{N} 6$	$2.485(6)$	$\mathrm{N} 6-\mathrm{C} 7$	$1.450(10)$
$\mathrm{N} 3-\mathrm{C} 4$	$1.476(7)$		
$\mathrm{O}^{\mathrm{i}}-\mathrm{Na} 1-\mathrm{N} 3^{\mathrm{ii}}$	$101.39(12)$	$\mathrm{C} 4-\mathrm{N} 3-\mathrm{C} 8$	$114.4(5)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Na} 1-\mathrm{O} 2$	$85.87(16)$	$\mathrm{Na} 1-\mathrm{N} 3-\mathrm{C} 9$	$114.5(4)$
$\mathrm{N} 3^{\mathrm{ii}}-\mathrm{Na} 1-\mathrm{O} 2$	$115.45(13)$	$\mathrm{C} 4-\mathrm{N} 3-\mathrm{C} 9$	$106.2(5)$
$\mathrm{O} 2^{\mathrm{i}}-\mathrm{Na} 1-\mathrm{N} 3$	$101.39(12)$	$\mathrm{C} 8-\mathrm{N} 3-\mathrm{C} 9$	$108.3(5)$
$\mathrm{N} 3 \mathrm{ii}-\mathrm{Na} 1-\mathrm{N} 3$	$125.1(3)$	$\mathrm{N} 3-\mathrm{C} 4-\mathrm{C} 5$	$113.8(5)$
$\mathrm{O} 2-\mathrm{Na} 1-\mathrm{N} 3$	$115.45(13)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 6$	$114.0(5)$
$\mathrm{O} 2^{\mathrm{i}}-\mathrm{Na} 1-\mathrm{N} 6$	$167.9(2)$	$\mathrm{C} 55^{\mathrm{ii}}-\mathrm{N} 6-\mathrm{C} 5$	$107.6(7)$
$\mathrm{N} 3^{\mathrm{ii}}-\mathrm{Na} 1-\mathrm{N} 6$	$73.71(13)$	$\mathrm{C} 5^{\mathrm{ii}}-\mathrm{N} 6-\mathrm{Na} 1$	$107.7(3)$
$\mathrm{O} 2-\mathrm{Na} 1-\mathrm{N} 6$	$106.2(2)$	$\mathrm{C} 5-\mathrm{N} 6-\mathrm{Na} 1$	$107.7(3)$
$\mathrm{N} 3-\mathrm{Na} 1-\mathrm{N} 6$	$73.71(13)$	$\mathrm{C} 5^{\mathrm{ii}}-\mathrm{N} 6-\mathrm{C} 7$	$112.2(4)$
$\mathrm{Na} 1^{\mathrm{i}}-\mathrm{O} 2-\mathrm{Na} 1$	$94.13(16)$	$\mathrm{C} 5-\mathrm{N} 6-\mathrm{C} 7$	$112.2(4)$
$\mathrm{Na} 1-\mathrm{N} 3-\mathrm{C} 4$	$106.0(3)$	$\mathrm{Na} 1-\mathrm{N} 6-\mathrm{C} 7$	$109.2(4)$
$\mathrm{Na} 1-\mathrm{N} 3-\mathrm{C} 8$	$107.6(3)$		

Symmetry codes: (i) $-x+1,-y,-z$; (ii) $x,-y, z$.

A Chebychev polynomial (Watkin, 1994; Prince, 1982) was used in the weighting scheme, $[$ weight $]=1.0 /\left[A_{0} T_{0}(x)+A_{1} T_{1}(x) \cdots+\right.$ $A_{n-1} T_{n-1}(x)$], where A_{i} are the Chebychev coefficients 25.3, 38.1, 24.1, 10.0 and 3.69 , and $x=F / F_{\max }$; robust weighting (Prince, 1982) $W=$ [weight $]\left[1-(\delta F / 6 \sigma F)^{2}\right]^{2}$. The H -atom positions and $U_{\text {iso }}(\mathrm{H})$ values were refined using soft restraints on the bond lengths and angles to regularize their geometry $[\mathrm{C}-\mathrm{H}=0.95$ (4) to 0.98 (2) \AA, $\mathrm{O}-\mathrm{H}=0.82(5) \AA$, and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {equiv }}(\mathrm{C})$ and $\left.1.5 U_{\text {equiv }}(\mathrm{O})\right]$. The maximum residual electron density is located $0.98 \AA$ from atom Na 1 .

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZOISCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEP-3
(Farrugia, 1997); software used to prepare material for publication: CRYSTALS .

We thank the region Rhône-Alpes for financial support of this work to LHP (Superflex) and for a postdoctoral fellowship to SM.

References

Albada, G. A. V., Gorter, S. \& Reedijk, J. (1999). Polyhedron, 18, 1821-1824. Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Aukauloo, A., Ottenwaelder, X., Ruiz, R., Journeaux, Y., Pei, Y., Riviere, E., Cervera, B. \& Munoz, M. C. (1999). Eur. J. Inorg. Chem. 2, 209-212.
Barnhart, D. M., Burns, C. J., Saner, N. N. \& Watkin, J. G. (1995). Inorg. Chem. 34, 4079-4084.
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. \& Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Bishop, M., Bott, S. G. \& Barron, A. R. (2000). J. Chem. Soc. Dalton Trans. pp. 3100-3105.
Cole, M. J., Junk, P. C. \& Louis, L. M. (2002). J. Chem. Soc. Dalton Trans. pp. 3906-3914.
Ellermann, J., Schütz, M., Heinemann, F. W. \& Moll, M. (1998). Z. Anorg. Allg. Chem. 624, 257-262.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Gibney, B. R., Wang, H., Kampf, J. W. \& Pecoraro, V. L. (1996). Inorg. Chem. 35, 6184-6193.
Goher, W. A. S. \& Mautner F. A. (1994). Polyhedron, 12, 2557-2561.
Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.
Raston, C. L., Whitaker, C. R. \& White, A. H. (1989). Aust. J. Chem. 42, $1393-$ 1396.

Reglinski, J., Garner, M., Cassidy, I. D., Slavin, P. A., Spicer, M. D. \& Armstrong, D. R. (1999). J. Chem. Soc. Dalton Trans. pp. 2119-2126.
Shen, L. \& Jing, Z. M. (2002). Acta Cryst. C58, m591-m592.
Watkin, D. J. (1994). Acta Cryst. A50, 411-437.

